GCE

Mathematics

Advanced GCE
Unit 4725: Further Pure Mathematics 1

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

(i) $\quad\left(\begin{array}{ll}7 & 9\end{array}\right)$	B1B1 2	Each element correct SC $(7,9)$ scores B1
(ii) (18)	$\begin{aligned} & \text { B1* } \\ & \text { depB1 } 2 \end{aligned}$	Obtain correct value Clearly given as a matrix
(iii) $\left(\begin{array}{rr}12 & -4 \\ 6 & -2\end{array}\right)$	M1	Obtain 2×2 matrix
	$\begin{array}{lr} \text { A1 } & \\ \text { A1 } & \mathbf{3} \\ 7 & \end{array}$	Obtain 2 correct elements Obtain other 2 correct elements

2. (i)	$-12+13 i$	B1B1 2	Real and imaginary parts correct
(ii)		B1	z^{*} seen
		M1	Multiply by w^{*}
	$\underline{27}-14 \mathrm{i}$	A1	Obtain correct real part or numerator
	$37 \quad 37$		
		A1	Obtain correct imaginary part or denom Sufficient working must be shown
		6	

3		B1* M1* A1* depA1 4 4	Establish result true for $n=1$ or 2 Use given result in recurrence relation in a relevant way Obtain $2^{n}+1$ correctly Specific statement of induction conclusion
4	Either	B1	Correct value for $\sum r$ stated or used
		M1	Express as sum of two series
	$\frac{a}{4} n^{2}(n+1)^{2}+\frac{b n}{2}(n+1)$	A1	Obtain correct unsimplified answer
		M1	Compare coefficients or substitute values for n
	$\begin{aligned} & a=4 \quad b=-4 \\ & \boldsymbol{O r} \end{aligned}$	A1 A1 6	Obtain correct answers
		M1	Use 2 values for n
	$a+b=04 a+b=12$	A1 A1	Obtain correct equations
		M1	Solve simultaneous equations
	$a=4 \quad b=-4$	A1 A1	Obtain correct answers
		6	
5		B1	$\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$ seen or implied
		M1	Use product inverse correctly
	\mathbf{A}^{2}	A1cao 3	Obtain correct answer

(ii) $\alpha^{\prime} \beta^{\prime}=\alpha \beta+\frac{1}{\alpha \beta}+\frac{\beta}{\alpha}+\frac{\alpha}{\beta}$
$\frac{\beta}{\alpha}+\frac{\alpha}{\beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}$
$q=\frac{1}{3}$

B1 Correct expansion

M1 \quad Show how to deal with $\alpha^{2}+\beta^{2}$
A1 Obtain correct expression
M1 \quad Substitute their values into $\alpha^{\prime} \beta^{\prime}$
A1 5 Obtain correct answer a.e.f.
9

(i) $\operatorname{det} \mathbf{M}=a^{2}-7 a+6$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$		Show correct expansion process for 3×3 Correct evaluation of any 2×2
	A1	3	correct answer
(ii)	M1		Solve $\operatorname{det} \mathbf{M}=0$
$a=1$ or 6	A1A1	3	Obtain correct answer, ft their (i)
(iii)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Attempt to eliminate one variable Obtain 2 correct equations in 2 unknowns
	A1	3	Justify infinite number of solutions SC 3/3 if unique solution conclusion consistent with their (i) or (ii)

9

10 (i)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Use correct denominator Obtain given answer correctly
(ii)	M1		Express terms as differences using (i)
	M1		Do this for at least 3 terms
	A1		First 3 terms all correct
	A1		Last 2 terms all correct
$\frac{1}{2}-\frac{1}{n+1}+\frac{1}{n+2}$	M1		Show relevant cancelling
	A1	6	Obtain correct answer a.e.f.
(iii) $\begin{aligned} & \frac{1}{2} \\ & \frac{1}{n+1}-\frac{1}{n+2}\end{aligned}$	B1ft		S_{∞} stated or start at $n+1$ as in (ii)
			S_{∞} stated or start at $n+1$ as in (ii)
	M1		
			S_{∞} - their (ii) or show correct cancelling
$\frac{1}{(n+1)(n+2)}$	A1	3	Obtain given answer correctly
	11		

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

